Bibliography for Future Directions

This is a collection of citations that have to do with Future Directions of Remote Sensing. Feel free to add to it.  You can click edit and add APA citations.

Abad-Segura, E., González-Zamar, M.-D., Vázquez-Cano, E., & López-Meneses, E. (2020). Remote sensing applied in forest management to optimize ecosystem services: Advances in research. Forests, 11(9), 969.

Abdulwahid, A. H. (2021). Power grid surveillance and control based on wireless sensor network technologies: Review and future directions. Journal of Physics: Conference Series, 1773(1), 012004.

Aghababaei, H., Bagheri, H., Bai, Z., Balz, T., Benediktsson, J., Bernini, G., Bhatt, J., Boyd, D., Brown, M., & Budillon, A. (n.d.). 2020 Index IEEE Geoscience and Remote Sensing Magazine Vol. 8.

Ahmed, R., Kumar, P., & Rani, M. (2021). Introduction to Challenges and Future Directions in Remote Sensing and GIScience. In Remote Sensing and GIScience (pp. 3–7). Springer.

Akhund, T. M. N. U., Newaz, N. T., Hossain, M. R., & Kaiser, M. S. (2021). Low-Cost Smartphone-Controlled Remote Sensing IoT Robot. In Information and Communication Technology for Competitive Strategies (ICTCS 2020) (pp. 569–576). Springer.

Alem, A., & Kumar, S. (2020). Deep Learning Methods for Land Cover and Land Use Classification in Remote Sensing: A Review. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), 903–908.

Almalki, F., Alsamhi, S. H., Sahal, R., Hassan, J., Hawbani, A., Rajput, N. S., Saif, A., Morgan, J., & Breslin, J. (2021). Green IoT for eco-friendly and sustainable smart cities: Future directions and opportunities. Mobile Networks and Applications, 1–25.

Altman, J. (2020). Tree-ring-based disturbance reconstruction in interdisciplinary research: Current state and future directions. Dendrochronologia, 125733.

Aposporis, P. (2020). Object Detection Methods for Improving UAV Autonomy and Remote Sensing Applications. 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), 845–853.

Babu, S. T., Chintesh, I., Satyanarayana, V., & Nandan, D. (2020). Image Fusion: Challenges, Performance Metrics and Future Directions. In Electronic Systems and Intelligent Computing (pp. 575–584). Springer.

Baines, O., Wilkes, P., & Disney, M. (2020). Quantifying urban forest structure with open-access remote sensing data sets. Urban Forestry & Urban Greening, 50, 126653.

Barone, P. M., Wueste, E., & Hodges, R. (2020). Remote Sensing Materials for a Preliminary Archaeological Evaluation of the Giove Countryside (Terni, Italy). Remote Sensing, 12(12), 2023.

Batar, A. K., & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan Region: Recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10(3), 114.

Boudouridis, A., Yizengaw, E., Moldwin, M. B., & Zesta, E. (2021). Nonlinear Least Squares Fitting Technique for the Determination of Field Line Resonance Frequency in Ground Magnetometer Data: Application to Remote Sensing of Plasmaspheric Mass Density. Wiley Online Library.

Boulila, W., Driss, M., Al-Sarem, M., Saeed, F., & Krichen, M. (2021). Weight Initialization Techniques for Deep Learning Algorithms in Remote Sensing: Recent Trends and Future Perspectives. ArXiv Preprint ArXiv:2102.07004.

Brook, A. (2020). Spectroscopy and Remote Sensing Techniques to Assess Active-and Post-Fire Effects. Multidisciplinary Digital Publishing Institute Proceedings, 30(1), 78.

Bruning, B., Berger, B., Lewis, M., Liu, H., & Garnett, T. (2020). Approaches, applications, and future directions for hyperspectral vegetation studies: An emphasis on yield-limiting factors in wheat. The Plant Phenome Journal, 3(1), e20007.

Butts-Wilmsmeyer, C. J., Rapp, S., & Guthrie, B. (2020). The technological advancements that enabled the age of big data in the environmental sciences: A history and future directions. Current Opinion in Environmental Science & Health.

Chandra, G. R., & Bhatia, S. (2020). Issues and Concerns in the Field of Remote Sensing. 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO), 654–658.

Chen, X., Yuan, H., & Yang, X. (2020). Analysis on the application status and future directions of geographic information technology in emergency management. 2020 International Conference on Urban Engineering and Management Science (ICUEMS), 596–599.

Chung, S. H., Sah, B., & Lee, J. (2020). Optimization for drone and drone-truck combined operations: A review of the state of the art and future directions. Computers & Operations Research, 123, 105004.

Çöltekin, A., Lochhead, I., Madden, M., Christophe, S., Devaux, A., Pettit, C., Lock, O., Shukla, S., Herman, L., & Stachoň, Z. (2020). Extended reality in spatial sciences: A review of research challenges and future directions. ISPRS International Journal of Geo-Information, 9(7), 439.

Crisp, J. R., Ellison, J. C., & Fischer, A. (2021). Current trends and future directions in quantitative geodiversity assessment. Progress in Physical Geography: Earth and Environment, 45(4), 514–540.

Crocetti, L., Forkel, M., Fischer, M., Jurečka, F., Grlj, A., Salentinig, A., Trnka, M., Anderson, M., Ng, W.-T., & Kokalj, Ž. (2020). Earth Observation for agricultural drought monitoring in the Pannonian Basin (southeastern Europe): Current state and future directions. Regional Environmental Change, 20(4), 1–17.

Cuenca-García, C., Risbøl, O., Bates, C. R., Stamnes, A. A., Skoglund, F., Ødegård, Ø., Viberg, A., Koivisto, S., Fuglsang, M., & Gabler, M. (2020). Sensing archaeology in the north: The use of non-destructive geophysical and remote sensing methods in archaeology in Scandinavian and North Atlantic territories. Remote Sensing, 12(18), 3102.

Davis, D. S., & Douglass, K. (2020). Aerial and spaceborne remote sensing in African archaeology: A review of current research and potential future avenues. African Archaeological Review, 37(1), 9–24.

Dierssen, H. M., Ackleson, S. G., Joyce, K. E., Hestir, E. L., Castagna, A., Lavender, S., & McManus, M. A. (2021). Living up to the hype of hyperspectral aquatic remote sensing: Science, resources and outlook. Frontiers in Environmental Science, 9.

Dong, Y., Chen, F., Han, S., & Liu, H. (2021). Ship object detection of remote sensing image based on visual attention. Remote Sensing, 13(16), 3192.

Duan, P., Wang, Y., & Yin, P. (2020). Remote sensing applications in monitoring of protected areas: A bibliometric analysis. Remote Sensing, 12(5), 772.

Duan, S.-B., Han, X.-J., Huang, C., Li, Z.-L., Wu, H., Qian, Y., Gao, M., & Leng, P. (2020). Land Surface Temperature Retrieval from Passive Microwave Satellite Observations: State-of-the-Art and Future Directions. Remote Sensing, 12(16), 2573.

Egerer, M., & Cohen, H. (2020). Urban Agroecology: Interdisciplinary Research and Future Directions (Vol. 23). CRC Press.

Eitel, J. U., Griffin, K. L., Boelman, N. T., Maguire, A. J., Meddens, A. J., Jensen, J., Vierling, L. A., Schmiege, S. C., & Jennewein, J. S. (2020). Remote sensing tracks daily radial wood growth of evergreen needleleaf trees. Global Change Biology, 26(7), 4068–4078.

Estoque, R. C. (2020). A review of the sustainability concept and the state of SDG monitoring using remote sensing. Remote Sensing, 12(11), 1770.

Gale, M. G., Cary, G. J., Van Dijk, A. I., & Yebra, M. (2021). Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sensing of Environment, 255, 112282.

Gao, F. (2021). Remote Sensing for Agriculture. Agro-Geoinformatics: Theory and Practice, 7.

Ghaffarian, S., Valente, J., Van Der Voort, M., & Tekinerdogan, B. (2021). Effect of Attention Mechanism in Deep Learning-Based Remote Sensing Image Processing: A Systematic Literature Review. Remote Sensing, 13(15), 2965.

Hamad, R. (2020). A remote sensing and GIS-based analysis of urban sprawl in Soran District, Iraqi Kurdistan. SN Applied Sciences, 2(1), 1–9.

Haule, K., Toczek, H., Borzycka, K., & Darecki, M. (2021). Influence of Dispersed Oil on the Remote Sensing Reflectance—Field Experiment in the Baltic Sea. Sensors, 21(17), 5733.

Hunt, D. A., Tabor, K., Hewson, J. H., Wood, M. A., Reymondin, L., Koenig, K., Schmitt-Harsh, M., & Follett, F. (2020). Review of Remote Sensing Methods to Map Coffee Production Systems. Remote Sensing, 12(12), 2041.

Ignatiuk, D., Hübner, C., & Jennings, I. (2021). SIOS’s Earth Observation (EO), Remote Sensing (RS), and operational activities in response to COVID-19.

Inoubli, R., Abbes, A. B., Farah, I. R., Singh, V., Tadesse, T., & Sattari, M. T. (2020). A review of drought monitoring using remote sensing and data mining methods. 2020 5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), 1–6.

Ishtiaque, A., Masrur, A., Rabby, Y. W., Jerin, T., & Dewan, A. (2020). Remote sensing-based research for monitoring progress towards SDG 15 in Bangladesh: A review. Remote Sensing, 12(4), 691.

Israr, A., Abro, G. E. M., Sadiq Ali Khan, M., Farhan, M., Zulkifli, B. M., & ul Azrin, S. (2021). Internet of Things (IoT)-Enabled Unmanned Aerial Vehicles for the Inspection of Construction Sites: A Vision and Future Directions. Mathematical Problems in Engineering, 2021.

Jackson, C. M., & Adam, E. (2020). Remote sensing of selective logging in tropical forests: Current state and future directions. IForest-Biogeosciences and Forestry, 13(4), 286.

Jawak, S. D., Andersen, B. N., Pohjola, V., Godøy, Ø., Hübner, C., Jennings, I., Ignatiuk, D., Holmén, K., Sivertsen, A., & Hann, R. (2021). SIOS’s Earth Observation (EO), Remote Sensing (RS), and operational activities in response to COVID-19. Remote Sensing, 13(4), 712.

Jeon, G. (2021). Editorial for the Special Issue “Advanced Artificial Intelligence and Deep Learning for Remote Sensing.” Multidisciplinary Digital Publishing Institute.

Kalantar, B., Ueda, N., Saeidi, V., Janizadeh, S., Shabani, F., Ahmadi, K., & Shabani, F. (2021). Deep Neural Network Utilizing Remote Sensing Datasets for Flood Hazard Susceptibility Mapping in Brisbane, Australia. Remote Sensing, 13(13), 2638.

Karim, A., Siddiqa, A., Safdar, Z., Razzaq, M., Gillani, S. A., Tahir, H., Kiran, S., Ahmed, E., & Imran, M. (2020). Big data management in participatory sensing: Issues, trends and future directions. Future Generation Computer Systems, 107, 942–955.

Karim, R., & Malcovati, P. (2021). On-Chip-Antennas: Next Milestone in the Big World of Small Satellites—A Survey of Potentials, Challenges, and Future Directions. IEEE Aerospace and Electronic Systems Magazine, 36(1), 46–60.

Khan, M. N., & Fatima, S. (2021). Land Use Planning and Sustainable Development: An Overview of Remote Sensing. Examining International Land Use Policies, Changes, and Conflicts, 330–350.

Komati, P. R., & Komati, R. D. (n.d.). Review on Deep Learning in Remote Sensing Image Classification.

Kong, L., Liu, Z., & Wu, J. (2020). A systematic review of big data-based urban sustainability research: State-of-the-science and future directions. Journal of Cleaner Production, 123142.

Kuang, W., & Dou, Y. (2020). Investigating the patterns and dynamics of urban green space in China’s 70 major cities using satellite remote sensing. Remote Sensing, 12(12), 1929.

Kucharczyk, M., Hay, G. J., Ghaffarian, S., & Hugenholtz, C. H. (2020). Geographic object-based image analysis: A primer and future directions. Remote Sensing, 12(12), 2012.

Kumar, J., Vashisth, A., Sinha, N. K., Mohanty, M., Rani, A., & Chaudhary, R. S. (2021). Application of Ground-Based Remote Sensing in Identifying Biotic Stress: A Review. Research Biotica, 3(1), 28–32.

Kumar, P., Sajjad, H., Chaudhary, B. S., Rawat, J. S., & Rani, M. (n.d.). Remote Sensing and GIScience.

Kumar, V., Yadav, A. K., & Singh, A. (2021). Land Transformation and Future Projections of Land Consumption Using High-Resolution Remote Sensing Data for Allahabad, India. In Geospatial Technology and Smart Cities (pp. 135–150). Springer.

Kutser, T., Hedley, J., Giardino, C., Roelfsema, C., & Brando, V. E. (2020). Remote sensing of shallow waters–A 50 year retrospective and future directions. Remote Sensing of Environment, 240, 111619.

Lamb, R. L., Hurtt, G. C., Boudreau, T. J., Campbell, E., Carlo, E. A. S., Chu, H.-H., de Mooy, J., Dubayah, R. O., Gonsalves, D., & Guy, M. (2021). Context and future directions for integrating forest carbon into sub-national climate mitigation planning in the RGGI region of the US. Environmental Research Letters, 16(6), 063001.

Lechner, A. M., Foody, G. M., & Boyd, D. S. (2020). Applications in remote sensing to forest ecology and management. One Earth, 2(5), 405–412.

Lee, H. J. (2020). Advancing Exposure Assessment of PM2. 5 Using Satellite Remote Sensing: A Review. Asian Journal of Atmospheric Environment (AJAE), 14(4).

Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X., & Zhang, C. (2020). A review of remote sensing for environmental monitoring in China. Remote Sensing, 12(7), 1130.

Li, J., Shen, H., Li, H., Jiang, M., & Yuan, Q. (2021). Radiometric quality improvement of hyperspectral remote sensing images: A technical tutorial on variational framework. Journal of Applied Remote Sensing, 15(3), 031502.

Li, T., Cui, L., Xu, Z., Hu, R., Joshi, P. K., Song, X., Tang, L., Xia, A., Wang, Y., & Guo, D. (2021). Quantitative Analysis of the Research Trends and Areas in Grassland Remote Sensing: A Scientometrics Analysis of Web of Science from 1980 to 2020. Remote Sensing, 13(7), 1279.

Li, X., Han, H., Lu, H., Niu, X., Yu, Z., Dantcheva, A., Zhao, G., & Shan, S. (2020). The 1st challenge on remote physiological signal sensing (RePSS). Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 314–315.

Li, Z. (2020). Geospatial big data handling with high performance computing: Current approaches and future directions. In High Performance Computing for Geospatial Applications (pp. 53–76). Springer.

Li, Z.-L., Leng, P., Zhou, C.-H., Chen, K.-S., Zhou, F.-C., & Shang, G.-F. (2021). Soil moisture retrieval from remote sensing measurements: Current knowledge and directions for the future. Earth-Science Reviews, 103673.

Lin, W., Adetomi, A., & Arslan, T. (2021). Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural Networks: Analysis and Future Directions. Electronics, 10(17), 2048.

Lister, A. J., Andersen, H., Frescino, T., Gatziolis, D., Healey, S., Heath, L. S., Liknes, G. C., McRoberts, R., Moisen, G. G., & Nelson, M. (2020). Use of Remote Sensing Data to Improve the Efficiency of National Forest Inventories: A Case Study from the United States National Forest Inventory. Forests, 11(12), 1364.

Liu, D., Zhang, Q., Wang, J., Wang, Y., Shen, Y., & Shuai, Y. (2021). The Potential of Moonlight Remote Sensing: A Systematic Assessment with Multi-Source Nightlight Remote Sensing Data. Remote Sensing, 13(22), 4639.

Lu, Z., & Kim, J. (2021). A Framework for Studying Hydrology-Driven Landslide Hazards in Northwestern US Using Satellite InSAR, Precipitation and Soil Moisture Observations: Early Results and Future Directions. GeoHazards, 2(2), 17–40.

Mai, G., Janowicz, K., Zhu, R., Cai, L., & Lao, N. (2021). Geographic Question Answering: Challenges, Uniqueness, Classification, and Future Directions. AGILE: GIScience Series, 2, 1–21.

Majumdar, S., Smith, R., Butler Jr, J. J., & Lakshmi, V. (n.d.). Estimating Groundwater Withdrawals using Multi-Temporal Remote Sensing Products and Machine Learning.

Malik, A. I., Kongsil, P., Nguyễn, V. A., Ou, W., Srean, P., López-Lavalle, L. A. B., Utsumi, Y., Lu, C., Kittipadakul, P., & Nguyễn, H. H. (2020). Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breeding Science, 18180.

Mellit, A., & Kalogirou, S. (2021). Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions. Renewable and Sustainable Energy Reviews, 143, 110889.

Mendillo, M. (2020). Status and future directions. In The Dynamical Ionosphere (pp. 21–23). Elsevier.

Mohan, A., Singh, A. K., Kumar, B., & Dwivedi, R. (2021). Review on remote sensing methods for landslide detection using machine and deep learning. Transactions on Emerging Telecommunications Technologies, 32(7), e3998.

Munasinghe, D., Cohen, S., & Gadiraju, K. (2021). A Review of Satellite Remote Sensing Techniques of River Delta Morphology Change. Remote Sensing in Earth Systems Sciences, 1–32.

Munawar, H. S. (2020). Flood disaster management: Risks, technologies, and future directions. Machine Vision Inspection Systems: Image Processing, Concepts, Methodologies and Applications, 1, 115–146.

Nguyen, M. T., Sebesvari, Z., Souvignet, M., Bachofer, F., Braun, A., Garschagen, M., Schinkel, U., Yang, L. E., Nguyen, L. H. K., & Hochschild, V. (2021). Understanding and assessing flood risk in Vietnam: Current status, persisting gaps, and future directions. Journal of Flood Risk Management, 14(2), e12689.

Painam, R. K., & Manikandan, S. (2021). A comprehensive review of SAR image filtering techniques: Systematic survey and future directions. Arabian Journal of Geosciences, 14(1), 1–15.

Paz, A., Reginato, M., Michelangeli, F. A., Goldenberg, R., Caddah, M. K., Aguirre-Santoro, J., Kaehler, M., Lohmann, L. G., & Carnaval, A. (2020). Predicting Patterns of Plant Diversity and Endemism in the Tropics Using Remote Sensing Data: A Study Case from the Brazilian Atlantic Forest. In Remote sensing of plant biodiversity (pp. 255–266). Springer, Cham.

Pei, T., Xu, J., Liu, Y., Huang, X., Zhang, L., Dong, W., Qin, C., Song, C., Gong, J., & Zhou, C. (2021). GIScience and remote sensing in natural resource and environmental research: Status quo and future perspectives. Geography and Sustainability, 2(3), 207–215.

Potnis, A. V., Durbha, S. S., & Shinde, R. C. (2021). Semantics-Driven Remote Sensing Scene Understanding Framework for Grounded Spatio-Contextual Scene Descriptions. ISPRS International Journal of Geo-Information, 10(1), 32.

Prasad, P. N. (2020). Evolution of multiphoton microscopy over three decades: Current perspectives and future directions (Conference Presentation). Multiphoton Microscopy in the Biomedical Sciences XX, 11244, 1124403.

Pu, R. (2021). Mapping Tree Species Using Advanced Remote Sensing Technologies: A State-of-the-Art Review and Perspective. Journal of Remote Sensing, 2021.

Rashidi, M., Mohammadi, M., Sadeghlou Kivi, S., Abdolvand, M. M., Truong-Hong, L., & Samali, B. (2020). A decade of modern bridge monitoring using terrestrial laser scanning: Review and future directions. Remote Sensing, 12(22), 3796.

Record, S., Dahlin, K. M., Zarnetske, P. L., Read, Q. D., Malone, S. L., Gaddis, K. D., Grady, J. M., Costanza, J., Hobi, M. L., & Latimer, A. M. (2020). Remote Sensing of Geodiversity as a Link to Biodiversity. In Remote Sensing of Plant Biodiversity (pp. 225–253). Springer, Cham.

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2020). EXPLAIN IT TO ME–FACING REMOTE SENSING CHALLENGES IN THE BIO-AND GEOSCIENCES WITH EXPLAINABLE MACHINE LEARNING. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 3, 817–824.

Saralioglu, E., & Gungor, O. (2020). Crowdsourcing in remote sensing: A review of applications and future directions. IEEE Geoscience and Remote Sensing Magazine, 8(4), 89–110.

Savitri, K. P., Hecker, C., van der Meer, F. D., & Sidik, R. P. (2021). VNIR-SWIR infrared (imaging) spectroscopy for geothermal exploration: Current status and future directions. Geothermics, 96, 102178.

Schneising, O., Buchwitz, M., Reuter, M., Vanselow, S., Bovensmann, H., & Burrows, J. P. (2020). Remote sensing of methane leakage from natural gas and petroleum systems revisited. Atmospheric Chemistry and Physics, 20(15), 9169–9182.

Shao, D., Liu, C., & Tsow, F. (2020). Noncontact Physiological Measurement Using a Camera: A Technical Review and Future Directions. ACS Sensors, 6(2), 321–334.

Shirmard, H., Farahbakhsh, E., Müller, R. D., & Chandra, R. (2022). A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 268, 112750.

Tan, M. L., Gassman, P. W., Liang, J., & Haywood, J. M. (2021). A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of The Total Environment, 148915.

Tapiador, F. J., Villalba-Pradas, A., Navarro, A., García-Ortega, E., Lim, K. S. S., Kim, K., Ahn, K. D., & Lee, G. (2021a). Future Directions in Precipitation Science. Remote Sens. 2021, 13, 1074. s Note: MDPI stays neutral with regard to jurisdictional claims in published ….

Tapiador, F. J., Villalba-Pradas, A., Navarro, A., García-Ortega, E., Lim, K.-S. S., Kim, K., Ahn, K. D., & Lee, G. (2021b). Future Directions in Precipitation Science. Remote Sensing, 13(6), 1074.

Taylor, L. S., Quincey, D. J., Smith, M. W., Baumhoer, C. A., McMillan, M., & Mansell, D. T. (2021). Remote sensing of the mountain cryosphere: Current capabilities and future opportunities for research. Progress in Physical Geography: Earth and Environment, 03091333211023690.

Thompson, D. R., Brodrick, P. G., Bohn, N., Braverman, A., Carmon, N., Connelly, D., Fahlen, J., Green, R. O., Herman, R. L., & Hobbs, J. (2020). Toward comprehensive uncertainty predictions for remote imaging spectroscopy. Imaging Spectrometry XXIV: Applications, Sensors, and Processing, 11504, 115040B.

Tompalski, P., Coops, N. C., White, J. C., Goodbody, T. R., Hennigar, C. R., Wulder, M. A., Socha, J., & Woods, M. E. (2021a). Estimating Changes in Forest Attributes and Enhancing Growth Projections: A Review of Existing Approaches and Future Directions Using Airborne 3D Point Cloud Data. Current Forestry Reports, 1–24.

Tompalski, P., Coops, N. C., White, J. C., Goodbody, T. R., Hennigar, C. R., Wulder, M. A., Socha, J., & Woods, M. E. (2021b). Publisher Correction: Estimating Changes in Forest Attributes and Enhancing Growth Projections: a Review of Existing Approaches and Future Directions Using Airborne 3D Point Cloud Data. Current Forestry Reports, 1–6.

Verrall, B., & Pickering, C. M. (2020). Alpine vegetation in the context of climate change: A global review of past research and future directions. Science of The Total Environment, 748, 141344.

Vihervaara, P., Anttila, S., Kullberg, P., Härmä, P., Törmä, M., Jussila, T., Aapala, K., Heikkinen, R., Mäyrä, J., & Kervinen, M. (2021). Finnish Ecosystem Observatory (FEO)-operationalizing remote sensing analyses for threatened habitats and biodiversity monitoring. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 735–738.

Virnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020a). Application of machine learning on remote sensing data for sugarcane crop classification: A Review. ICT Analysis and Applications, 539–555.

Virnodkar, S. S., Pachghare, V. K., Patil, V. C., & Jha, S. K. (2020b). Remote sensing and machine learning for crop water stress determination in various crops: A critical review. Precision Agriculture, 21(5), 1121–1155.

Wang, T., Yu, L., & Lin, J. (2021). Coastal shallow waters explorer imaging spectrometer for aerial remote sensing of shallow waters in UV-VIS-NIR broadband. Applied Optics, 60(6), 1566–1573.

Wang, X., Wu, G., Xing, L., & Pedrycz, W. (2020). Agile earth observation satellite scheduling over 20 years: Formulations, methods, and future directions. IEEE Systems Journal.

Wanjari, R. N., Ramteke, K. K., & Dhanalakshmi, M. (2021). The Roles of Remote Sensing in Aquaculture Site-Selection. Biotica Research Today, 3(7), 608–611.

Wen, D., Huang, X., Bovolo, F., Li, J., Ke, X., Zhang, A., & Benediktsson, J. A. (2021). Change Detection From Very-High-Spatial-Resolution Optical Remote Sensing Images: Methods, applications, and future directions. IEEE Geoscience and Remote Sensing Magazine.

Wied, J. P., Perotto-Baldivieso, H. L., Conkey, A. A., Brennan, L. A., & Mata, J. M. (2020). Invasive grasses in South Texas rangelands: Historical perspectives and future directions. Invasive Plant Science and Management, 13(2), 41–58.

Wong, M. S., Zhu, X., Abbas, S., Kwok, C. Y. T., & Wang, M. (2021). Optical Remote Sensing. Urban Informatics, 315.

Woodcock, C. E., Loveland, T. R., Herold, M., & Bauer, M. E. (2020). Transitioning from change detection to monitoring with remote sensing: A paradigm shift. Remote Sensing of Environment, 238, 111558.

Xia, J., Zhang, Y., Mu, X., Zuo, Q., Zhou, Y., & Zhao, G. (2021). A review of the ecohydrology discipline: Progress, challenges, and future directions in China. Journal of Geographical Sciences, 31(8), 1085–1101.

Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: Current status, development, and future directions. Land, 9(1), 28.

Xu, G., Gao, Y., Li, J., & Xing, M. (2020). InSAR phase denoising: A review of current technologies and future directions. IEEE Geoscience and Remote Sensing Magazine, 8(2), 64–82.

Xu, J., Quackenbush, L. J., Volk, T. A., & Im, J. (2020). Forest and crop leaf area index estimation using remote sensing: Research trends and future directions. Remote Sensing, 12(18), 2934.

Yan, L., Li, Y., Chandrasekar, V., Mortimer, H., Peltoniemi, J., & Lin, Y. (2020). General review of optical polarization remote sensing. International Journal of Remote Sensing, 41(13), 4853–4864.

Yoo, C., Im, J., Park, S., & Cho, D. (2020). Spatial Downscaling of MODIS Land Surface Temperature: Recent Research Trends, Challenges, and Future Directions. Korean Journal of Remote Sensing, 36(4), 609–626.

Zhang, Y., & Shao, Z. (2021). Assessing of urban vegetation biomass in combination with LiDAR and high-resolution remote sensing images. International Journal of Remote Sensing, 42(3), 964–985.

Zhao, Y., Liu, Z., & Wu, J. (2020). Grassland ecosystem services: A systematic review of research advances and future directions. Landscape Ecology, 1–22.

Zimudzi, E., Sanders, I., Rollings, N., & Omlin, C. W. (2021). Remote sensing of mangroves using unmanned aerial vehicles: Current state and future directions. Journal of Spatial Science, 66(2), 195–212.